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Abstract

During the POLARCAT summer campaign in 2008, two episodes (2–5 July and 7–
10 July 2008) occurred where low-pressure systems traveled from Siberia across the
Arctic Ocean towards the North Pole. The two cyclones had extensive smoke plumes
embedded in their associated air masses, creating an excellent opportunity to use5

satellite and aircraft observations to validate the performance of atmospheric transport
models in the Arctic, which is a challenging model domain due to numerical and other
complications.

Here we compare transport simulations of carbon monoxide (CO) from the La-
grangian transport model FLEXPART, the Eulerian chemical transport model TOMCAT,10

and for numerical aspects the limited-area chemical transport model WRF-Chem. Re-
trievals of total column CO from the IASI passive infrared sensor onboard the MetOp-A
satellite are used as a total column CO reference for the two simulations. Main aspect
of the comparison is how realistic horizontal and vertical structures are represented in
the model simulations. Analysis of CALIPSO lidar curtains and in situ aircraft measure-15

ments provide further independent reference points to assess how reliable the model
simulations are and what the main limitations are.

The horizontal structure of mid-latitude pollution plumes agrees well between the
IASI total column CO and the model simulations. However, finer-scale structures are
too quickly diffused in the Eulerian models. Aircraft data suggest that the satellite data20

are biased high, while TOMCAT and WRF-Chem are biased low. FLEXPART fits the
aircraft data rather well, but due to added background concentrations the simulation
is not independent from observations. The multi-data, multi-model approach allows
separating the influences of meteorological fields, model realisation, and grid type on
the plume structure. In addition to the very good agreement between simulated and25

observed total column CO fields, the results also highlight the difficulty to identify a
data set that most realistically represents the actual state of the atmosphere.
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1 Introduction

The polar regions of the Northern Hemisphere are often perceived as remote and pris-
tine. However, atmospheric transport can swiftly bring pollution from emission sources
at lower latitudes to the Arctic. Until recently, it was a commonly accepted view that air
pollution continuously seeps into the Arctic, similar to a bathtub filling up slowly from a5

dripping faucet (Raatz and Shaw, 1984; Barrie, 1986). Recent research has replaced
this concept by a picture where synoptic-scale events lead to the rapid advection of
polluted mid-latitude air that is subsequently assimilated into the cold Arctic air mass
through radiative cooling (Stohl, 2006). One implication of the dripping faucet hypothe-
sis was the view of the Arctic as a more or less homogeneous, well-mixed air mass with10

so-called background levels of atmospheric pollutants. Observations from aircraft and
more recently aerosol lidar have however demonstrated repeatedly since the 1980s
that the stably stratified Arctic air mass consists of an inhomogeneous, finely stirred
mélange of layered air masses with different physical and chemical properties that only
slowly undergoes mixing (Engvall et al., 2008, 2009).15

The reason for the fine layering of the Arctic atmosphere lies in its thermal stratifica-
tion. The lower part of the Arctic troposphere, the so-called polar dome, is isolated from
the rest of the atmosphere due to its low potential temperatures (Klonecki et al., 2003;
Stohl, 2006). Towards its southern boundaries this cold airmass creates an apparent
horizontal transport barrier, which enhances the concentration gradients between the20

middle latitudes and the Arctic. (It should be noted that while to a first order the Arc-
tic front apparently hinders pollution transport into the Arctic (Barrie, 1986) it is also
the region of baroclinic development that ultimately leads to the poleward advection
of mid-latitude air as part of frontal systems.) Within the Arctic dome, transport and
exchange are particularly slow and long residence times ensue. As air masses move25

towards the pole they are radiatively cooled, and become incorporated into a region of
large vertical gradient of potential temperature. Layers of different age and origin are
stacked on top of one another and are only slowly incorporated into the Arctic dome
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by further radiative cooling, mixing and diffusion. In contrast, above the polar dome
residence times can be on the order of only a few days (Klonecki et al., 2003; Stohl,
2006).

The fine-scale structure of the Arctic atmosphere poses a major problem for atmo-
spheric transport model simulations. Computational constraints require that Eulerian5

grid models are commonly run at horizontal and vertical resolutions that are inadequate
to represent the actual structure of the Arctic atmosphere. This leads to the overly rapid
diffusion and decay along the boundaries of advected plumes (Rastigejev et al., 2010).
Another common problem in Eulerian models using a latitude-longitude grid is that the
convergence of the meridians towards the poles leads to a singularity that needs to10

be accommodated by specific numerics. While in most models measures are taken
to ensure numerical stability near the pole, such as decreasing the grid resolution,
subdividing the time step (Krol et al., 2005) or changing the advection scheme around
the pole, side-effects like reduced effective resolution or enhanced numerical diffusion
cannot be avoided. These side-effects counteracts the requirement that numerical dif-15

fusion should be small to retain the sharp gradients in stable air masses (Krol et al.,
2005). Other approaches such as calculating on an icosahedral grid are not yet widely
used (Thuburn, 1997). Another common approach to atmospheric transport modeling
are Lagrangian models. Lagrangian transport models calculate the advection of indi-
vidual air parcels based on three-dimensional wind fields. A major advantage of these20

models is that in principle they are not limited by grid resolution. Unlike Eulerian chem-
istry transport models (CTMs), most Lagrangian models are currently not capable of
simulating the chemical transformation of an air mass. Also, due to issues with mass
distribution, Eulerian models are so far better suited to perform global budget studies
and simulations over long timescales. To some extent, Lagrangian models may also be25

affected by numerical problems near the pole as the meteorological data which force
them are calculated by Eulerian models. The long transport pathways, long lifetimes
of pollutants in the cold Arctic air, and strong vertical temperature gradients close to
the surface (Strunin et al., 1997) are further challenges for all atmospheric transport
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calculations in polar regions. So far, simulations of transport in the Arctic atmosphere
from both model types have not yet been compared directly.

In addition to numerical difficulties, simulations in the Arctic are restricted by the spar-
sity of observational data. Routine meteorological surface observations for example
that are assimilated into meteorological data used by transport model simulations are5

less dense in the Arctic. Furthermore, it is difficult to obtain reliable data for validating
model simulations in this region. Passive and active remote sensing, for example from
satellites, is hampered by low solar zenith angles and the reflective and thermal prop-
erties of the surface (Turquety et al., 2009). Another difficulty is that emission sources
are mostly located far outside the Arctic, and are often not well quantified. Most of the10

emission sources that affect the Arctic are located in Europe, Eurasia and other mid-
latitude areas (Stohl, 2006). The source region influence is subject to a pronounced
seasonal cycle. During winter, emissions from fossil fuel and biofuel combustion and
industrial processes constitute the main sources. During spring and summer pollu-
tion sources are forest fires and other biomass burning as well as industrial emissions15

(Stohl et al., 2007; Warneke et al., 2009; Paris et al., 2009; Warneke et al., 2010).
Taking technical and observational problems together, it is not surprising that a re-

cent inter-comparison study between 17 CTMs for the Arctic mainly highlighted the
divergence between model results, e.g. with respect to the simulated seasonal cycle
of atmospheric constituents (Shindell et al., 2008). Models also disagree on the role20

and distance of pollution sources. While Koch and Hansen (2005) argued for a large
contribution from South Asia to black carbon concentrations in the Arctic, Stohl (2006)
emphasized the much larger importance of mid-latitude sources. Resolving such dis-
crepancies is scientifically important but also relevant for creating effective measures
to control Arctic pollution levels.25

The IPY (International Polar Year) placed a large observational and model focus on
the polar regions during the years 2007–2009. During the international POLARCAT
GRACE summer campaign in July 2008 a range of data from different platforms were
acquired which created an excellent opportunity for an in-depth model-to-data compar-
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ison study in the Arctic. During the period 2–10 July 2008 two low-pressure systems
moved from Siberia towards the North Pole, one of them even towards Europe, bring-
ing along extensive smoke plumes from biomass burning in Siberia embedded in the
associated air masses. The chemical composition of the air masses was measured
from aircraft, and observed by active and passive remote sensing instruments from5

satellite and aircraft platforms.
The aim of this paper is to evaluate to what extent the transport across the pole in

terms of the horizontal and vertical structure of air masses is simulated realistically
by an Eulerian and a Lagrangian transport model. It is not our aim to decide which
model is performing better, but rather to gain a complementary view from the two types10

of models. Nevertheless we do aim to point out which aspects of the simulations,
according to the observations, are reliable and which may be affected by artifacts. In-
situ and remote sensing data acquired during the period 2–10 July 2008 are used for
reference and validation. In addition, the paper highlights the difficulties in comparing
data sets from such distinct sources as models, satellites, and aircraft.15

2 Models and data

This study is primarily based on the simulation results of two atmospheric transport
models: (i) the Lagrangian particle dispersion model FLEXPART (Stohl et al., 2005)
and (ii) the Eulerian CTM TOMCAT (Arnold et al., 2005; Chipperfield, 2006). Numerical
aspects are also compared to a simulation using the Eulerian limited-area CTM WRF-20

Chem (Grell et al., 2005). An important distinction between FLEXPART and TOMCAT
is that TOMCAT includes a complete set of chemical reactions in the atmosphere,
while in FLEXPART only some removal mechanisms are parameterised. We mainly
focus on carbon monoxide (CO) in our comparison, as it is typically associated with
anthropogenic and biogenic combustion fumes and is hence useful as a tracer for at-25

mospheric pollution transport. Furthermore, CO is observable by satellite and aircraft,
and its atmospheric lifetime in the Arctic during summer is sufficiently long (2–4 weeks)
for transport to play an important role.
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2.1 Lagrangian model FLEXPART

The Lagrangian particle dispersion model FLEXPART was run based on meteorologi-
cal fields from the ECMWF (European Centre for Medium-Range Weather Forecasts)
analyses at 0.5◦×0.5◦ resolution. FLEXPART advects hypothetical air parcels of equal
mass based on the interpolated three-dimensional wind fields and additional random5

motions that account for turbulence and convection. North of 86◦ N, a grid in polar
stereographic projection was used to avoid a numerical singularity at the pole. Emis-
sions from biomass burning were initialized from daily MODIS fire hot-spot data. The
fire emissions scaled according to land-use classes were distributed in the lower 150 m
of the atmosphere and fires were assumed to have burned for 24 h (Stohl et al., 2007).10

The model simulation was run with a CO gas tracer and a black carbon (BC) aerosol
tracer. Air parcels of both tracers were removed from the simulation after a life-time of
20 days, assuming that by then the air parcels become incorporated into the so-called
atmospheric background (see Sect. 2.6). No chemical production/destruction of CO
was considered. BC aerosol tracer was removed by wet and dry deposition processes15

(Stohl et al., 2005). Anthropogenic emissions of CO and BC were initialised from the
updated EDGAR 3.2 emissions inventory for the year 2000 (Olivier and Berdowski,
2001).

2.2 Eulerian model TOMCAT

The TOMCAT model is a three-dimensional Eulerian CTM and has been previously20

used for a number of atmospheric chemistry transport simulations (Arnold et al., 2005;
Chipperfield, 2006). The model is forced using ECMWF operational analyses of wind
speed, temperature and humidity. The model was run at a horizontal resolution of
2.8◦×2.8◦ with 31 vertical levels up to 10 hPa. Large-scale advection is implemented
using the Prather (1986) scheme. The model accounts for sub-grid scale transport25

using the Tiedtke (1989) convection scheme and the Holtslag and Boville (1993) pa-
rameterization for turbulent mixing in the boundary layer following the method of Wang
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et al. (1999). The emissions have been updated for the purpose of this study to pro-
vide the best available estimate for 2008. Monthly averaged anthropogenic and ship
emissions are taken from Streets’ v1.2 ARCTAS emission inventory (available from
http://www.cgrer.uiowa.edu/arctas/emission.html) with volatile organic compound spe-
ciation applied following Lamarque et al. (2010). Isoprene and methanol emissions5

were calculated using the MEGAN model (Guenther et al., 2006) and all other natu-
ral emissions are taken from the POET inventories, as used in the MOZART-4 model,
described in Emmons et al. (2010). Daily biomass burning emissions estimates of
trace gases were created specifically for 2008 for the ARCTAS campaign. These were
created using MODIS satellite retrievals of hot-spots, area burned estimates and fuel10

loadings (Wiedinmyer et al., 2006). These emissions are regridded to the TOMCAT grid
and emitted into the surface layer daily beginning at 00:00 UTC (Monks et al., 2010).

The Gaussian Eulerian grid used in TOMCAT uses a constant longitude space and
has a box “edge” at the pole. Consequently, there are a couple of polar transport is-
sues which need to be overcome. For E-W advection the decreasing size of the boxes15

near the pole means that transport in this direction could violate the CFL condition for
a given model dynamical timestep (e.g. 30 min) and typical maximum expected zonal
winds throughout the whole vertical domain (e.g. 100 ms−1). Therefore, for the E-W
transport the model groups boxes together to form larger boxes in an “extended polar
zone” following the method described in Prather et al. (1987). For the model resolution20

and timestep used in this study this occurs at gridpoints poleward of 78◦ and effectively
reduces the model resolution at the pole. For the N-S transport the model uses full
normal grid. However, at the pole there is a singularity (i.e. the box edges have zero
size) and the model has an explicit treatment to advect mass from a box to the one
diametrically opposite depending on the wind vector at the pole. This allows cross po-25

lar transport to be considered in the N-S direction. E-W transport in the last latitude
band will also contribute to cross polar transport within the limitation of the model res-
olution. As the Prather (1986) scheme advects second-order moments (gradient and
curvature) of the tracer field along with the mixing ratios, some of the finer-scale struc-
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ture is retained once a feature passes over has passed over the pole and is distributed
over a larger number of gridboxes. Earlier versions of the TOMCAT/SLIMCAT model
have been widely used for studies of stratospheric polar ozone and shown very good
agreement with observations (Chipperfield et al., 2005).

2.3 Eulerian model WRF-Chem5

The Eulerian model WRF-Chem (Weather Research and Forecasting model coupled
with Chemistry) (Grell et al., 2005) was run with a simulation starting on 25 June 2008
00:00 UTC using 6-hourly 0.5◦×0.5◦ ECMWF analysis as input data. The model do-
main covers the area north of 20◦ N at a horizontal grid resolution of 50 km. In the
vertical, 34 levels up to 20 hPa were used. WRF-Chem was restarted every 24 h us-10

ing chemistry data from the previous simulation to initialize chemistry. The Second
Generation Regional Acid Deposition Model (RADM2) (Stockwell et al., 1990) is used
within WRF-Chem for gas phase chemistry together with Madronich (1987) photoly-
sis. To save computation time, aerosols and wet scavenging are not included in this
simulation.15

Fire emissions are calculated from daily Modis hotspot data with the
Prep chem sources tool developed by S. R. Freitas and K. Longo (Centro de Pre-
visao de Tempoe Estudos Climaticos, Brazil). Most of the emission factors in this tool
are taken from Andreae and Merlet (2001). WRF-Chem makes use of the Brasilian
Biomass Emission Model (Feitas et al., 2005; Longo and Feitas, 2007) to incorporate20

fires including a plume rise mechanism. In the present study fire emissions reach
heights of about 4.6 km.

The RETRO emission inventory (http://retro.enes.org) for July 2000 was used for
anthropogenic emissions. Note that emissions in July are generally lower than during
other months of a year. Therefore, emissions used for WRF-Chem are lower than the25

yearly emissions from EDGAR used in the FLEXPART model.
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2.4 Satellite remote-sensing data

Total column atmospheric CO observations (TCO) retrieved by the IASI instrument are
used to assess the horizontal accuracy of the model simulations. IASI is an infrared
sounder on board of the polar-orbiting Metop-A satellite, providing measurements of
trace gases such as CO, O3, CH4, HNO3, SO2 and H2O (Clerbaux et al., 2009). It5

provides near-global coverage twice per day. Daylight data over land contain more
information on the CO vertical distribution than night data over oceans, because of
the impact of thermal contrast (the temperature difference between the ground and the
first atmospheric layer) that limits the vertical sensitivity (Turquety et al., 2009). For
this study we only used daylight observations, i.e. where the zenith angle was lower or10

equal to 83◦. IASI has a horizontal coverage with a swath of around 2200 km. Each
atmospheric view consists of 2×2 pixels, each with a 12 km pixel diameter and spaced
out 50 km at nadir. The CO data were retrieved from IASI radiance spectra using the
FORLI-CO software developed at the Université Libre de Bruxelles. The employed
algorithm is based on the optimal estimation method (Rodgers, 2000) as described in15

Turquety et al. (2009) and George et al. (2009).
Since the satellite observations from IASI are not equally sensitive to all atmospheric

layers, for a fair comparison the model data had to be weighted with the IASI averaging
kernel (AK). This is essentially the same as creating an artificial satellite retrieval from
the model data. A mean AK for the IASI CO retrievals has been created by averaging20

the individual AKs from the IASI daytime observations on 2 July 2008 north of 60◦ N
(Fig. 1b). To calculate a simulated total column retrieval, data from both models have
then been weighted using the equation

yo =Ak ·ym+ (I−Ak) ·ya (1)

where yo is the simulated satellite retrieval, Ak is the IASI AK vector for a column, ym is25

a model data vector, I is the identity matrix, and ya is the IASI a priori (Rodgers, 2000;
George et al., 2009).
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The Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) is in orbit on board
of the CALIPSO satellite as part of the NASA A-Train suite of satellites (Winker et al.,
2009). CALIPSO was launched in 2006, and flies at 705 km altitude in a 98◦-inclination
sun-synchronous polar orbit. The equator-crossing time is at 10:30 UT with a 16-day
repeat cycle. CALIOP provides profiles of backscatter at 532 nm and 1064 nm, as well5

as the degree of the linear polarization of the 532 nm signal. Lidar profiles at 532 nm are
available with a vertical resolution of 30 m (below 8.3 km) and 60 m (8.3–20.2 km). We
have utilized the level 1B data products (version 3.01) of total attenuated backscatter
at 532 nm. The data were ordered and downloaded via ftp from the NASA Langley
Atmospheric Science Data Center (ASCD) (see http://eosweb.larc.nasa.gov/).10

2.5 Aircraft measurements

Measurements from the NASA DC-8 and DLR Falcon 20E aircraft that were deployed
in the field during the simultaneous NASA ARCTAS and POLARCAT GRACE cam-
paigns in Canada and Greenland, respectively, were used to provide in situ validation
for the model simulations and the construction of a background CO profile. On the15

DLR Falcon CO was measured with a vacuum UV resonance fluorescence instrument
(Gerbig et al., 1999). Data are reported at a 10 s interval, typically averaging over a
flight distance of ∼2 km.

On the NASA DC-8 CO was measured by the Differential Absorption CO Measure-
ment (DACOM) instrument. The DACOM spectrometer system is an airborne fast, high20

precision sensor that includes three tunable diode lasers providing 4.7, 4.5 and 3.3 µm
radiation for accessing absorption lines of CO, N2O, and CH4, respectively (Sachse
et al., 1987). For CO, the precision is 2% or 2 ppbv. The NASA Langley airborne differ-
ential absorption lidar (DIAL) system (Browell et al., 1998) makes simultaneous O3 and
aerosol backscatter profile measurements with four laser beams: two in the ultraviolet25

(UV) for O3 and one each in the visible and infrared for aerosols. DIAL makes mea-
surements in both the nadir (below the aircraft) and in the zenith (above the aircraft)
which are combined to construct a complete profile. The vertical resolution of DIAL is
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300 m in the nadir and 600 m in the zenith. Here, only the aerosol backscatter data
at 1064 nm were used. The DC-8 data are reported at 10 s intervals, thereby typically
averaging over a flight distance of ∼2 km.

For this study, it is important for a direct comparison of the various data sets that infor-
mation is extracted at or interpolated to the mutually corresponding points in time and5

space. To this end, the 6-hourly instantaneous data from TOMCAT were interpolated
and the 3-hourly time and space-averaged data from FLEXPART were sub-sampled to
cover the same observational space as probed by the satellite sensor or aircraft. All
total column CO data were converted to units of mg m−2 for comparison.

2.6 Atmospheric background CO10

Since in this simulation FLEXPART does not retain atmospheric constituents beyond a
lifetime of 20 days, a so-called atmospheric background profile had to be added to the
FLEXPART data in order to make quantitative comparisons to the other measurements.
Figure 1a shows the mean profiles of the minimum CO mixing ratio at each longitude
circle north of 70◦ N from the TOMCAT simulation compared to the mean of the 2015

percentile of all CO observations north of 70◦ N from the DLR Falcon made during the
POLARCAT GRACE campaign. Interestingly, enhanced background CO mixing ratios
of up to 120 ppbv are apparent between 550–300 hPa in the Falcon measurements
(blue line). This upper-tropospheric CO enhancement is most likely a peculiarity of this
data set, which is due to the long-range transport of CO from Canadian and Siberian20

forest fires at these levels below the tropopause. The global IASI CO a priori profile
(Fig. 1a, green line) also suggests that the Falcon background profile is enhanced at
these levels.

For the background profile that was added to the FLEXPART data, we followed a
smoothed profile of the Falcon CO data below 550 hPa and above 300 hPa (Fig. 1a, red25

line). In between those levels, we used the IASI a priori as a guidance to constrain the
FLEXPART background profile. Essentially, it is not possible to provide a “true” back-
ground profile: there is no clear definition when a CO molecule will be part of the hypo-
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thetical well-mixed background reservoir, so any chosen method will be associated with
errors. However, since the same background profile is applied throughout this paper,
this uncertainty could only cause a constant offset compared to other measurements.
Two particular observations in Fig. 1a are noteworthy: (i) the TOMCAT CO background
values are throughout the atmospheric column about 10 ppbv lower than the IASI a5

priori and the FLEXPART background profile, suggesting a bias compared to other
data. Note that the background concentrations of the TOMCAT simulations emerge
from a free run of the model chemistry based on the emission sources. Matching the
background values of the observations is thus more challenging for TOMCAT than for
FLEXPART where the background is taken from observations. (ii) The IASI a priori10

retains higher values than all other profiles in the tropopause region (300–50 hPa) and
in the lower troposphere (750–1000 hPa), which is due to the use of a global a priori
that is probably less realistic at Arctic latitudes.

3 Results

3.1 Meteorology and horizontal plume structure15

3.1.1 First episode, 2–5 July 2008

Figure 2 displays the first episode of cross-Arctic pollution transport during 2–5 July
2008 as total-column CO simulated by the FLEXPART model (left column) and TOM-
CAT (right column). Due to the different background values in both simulations, the
color scales have been chosen differently to most clearly reflect the respective struc-20

ture of TCO. The dynamical tropopause, indicated by the 2 pvu contour at 325 K (blue
line, left column) clearly separates more CO-rich mid-latitude air-masses from the rela-
tively clean Arctic atmosphere (∼600–700 mg m−2 CO). The white contours in the right
column depict sea level pressure (SLP). SLP and the tropopause are both taken from
the ECMWF analysis data.25
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At 2 July 2008 12:00 UTC a large part of eastern Siberia in the FLEXPART and
TOMCAT simulation is covered by very high TCO values (>1600 mg m−2, Fig.2 a, b).
The high TCO values are caused by extensive forest fires in eastern Siberia that had
been burning since end of June 2008. Ahead of a stratospheric streamer near 160◦ E
pollution-rich mid-latitude air is advected to higher latitudes in a narrow plume. The5

SLP field shows that a weak low-pressure system is located under the stratospheric
streamer near 150◦ E/70◦ N (Fig. 2b, white contours). This weak baroclinic system is
also apparent in IR imagery (O. Cooper, personal communication, 2010). The CO-
rich plume is mostly confined by the tropopause boundary (Fig. 2a, blue contour).
In general, the TCO fields from both models agree in the overall structure. In the10

TOMCAT simulation gradients are mostly weaker as can be expected from the coarse-
grid simulation. The high-CO tongue has lower concentrations in TOMCAT, which is
probably also due to different emissions.

At 3 July 2008 00:00 UTC the tropospheric streamer has progressed further north,
thereby elongating meridionally and approaching disconnection from the mid-latitude15

reservoir (Fig. 2c, d). The low-pressure signature in the SLP field has weakened and is
now located at 140◦ E/80◦ N. In the TOMCAT simulation, gradients are weakened while
the plume is advected towards the pole. Maximum TCO values of the plume are still
>1600 mg m−2 in the FLEXPART simulation, while in TOMCAT maximum values are
∼950 mg m−2. At 4 July 2008 00:00 UTC (Fig. 2e, f), the mid-latitude plume has begun20

to curl up anticyclonically directly over the North Pole. Eroding along its boundaries,
it is being incorporated into the surrounding atmosphere. The low-pressure system
has become stagnant near 120◦ E/75◦ N. In the FLEXPART simulation the plume is
shedding fine filaments, indicating the Lagrangian representation of plume dispersion.
The Eulerian TOMCAT model has transformed the mid-latitude plume into a broad25

area of weakly enriched pollution. The difference between the TCO maxima in the
FLEXPART simulation and TOMCAT near the pole has further increased (>1600 ppbv
in FLEXPART vs. ∼850 ppbv in TOMCAT).
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As mid-latitude air is simultaneously moving poleward at 5 July 2008 12:00 UTC over
eastern Siberia and the Nordic Seas (Fig. 2g, h) the remaining mid-latitude plume over
the North Pole is strongly sheared apart and moves as fine filaments into the Canadian
Arctic and across Svalbard (16◦ E, 78◦ N) towards Scandinavia in the FLEXPART sim-
ulation (Fig. 2g). In the TOMCAT simulation only weak indications of such fine-scale5

structures remain which are too small to be resolved at the model’s grid resolution. The
locations of these weak structures agree however with the much more pronounced fila-
ments in the FLEXPART model. Other parts of the plume have by now mostly become
incorporated into the Arctic background CO.

Figure 3 shows a vertical cross-section through the pollution plume along10

160◦ E/20◦ W across the pole as indicated in Fig. 2e, f. In the FLEXPART simulation
(Fig. 3a) the mid-latitude plume is shown as a marked feature with high CO mixing
ratios (>200 ppbv) over the pole directly below the tropopause. Isentropically, the air
mass still carries a signature of its origin near 40–50◦ N with potential temperatures of
∼315 K. In the TOMCAT simulation (Fig. 3b) the feature is more confined in the vertical15

and has lower mixing ratios (140–160 ppbv). Since CO mixing ratios are equally high
in the area of the forest fire emissions near 50◦ N, the difference between the two sim-
ulations is probably related to the different diffusion properties in the Lagrangian and
the Eulerian model. In addition, chemical loss and production processes in TOMCAT
may also create some of the difference.20

3.1.2 Second episode, 6–10 July 2008

At the beginning of the second episode on 6 July 2008 06:00 UTC the large CO-rich
plume over eastern Siberia intrudes into the Arctic atmosphere, again ahead of a
stratospheric streamer (Fig. 4a). At the surface a low-pressure system is forming near
160◦ E/70◦ N (Fig. 4b). While the overall size and shape of the plume agree very well25

between the two simulations, differences in the location and extent of the TCO maxima
can be noted that are probably related to different forest fire emission schemes and
emission inventories.
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On 7 July 2008 00:00 UTC (Fig. 4c, d), the polluted airmass advances further to-
wards the pole and the low-pressure system rapidly deepens near the western tip of
the advancing mid-latitude airmass (170◦ E/78◦ N). The large plume enlongates and
reaches northern Greenland on 8 July 2008 12:00 UTC (Fig. 4e, f). The low-pressure
system has further deepened, reaching a minimum pressure of <986 hPa. The plume5

has acquired undulations along its outer boundary which are closely matched by the
tropospheric wave guide (Fig. 4e, blue contour). The plume structure is quite similar
in both models, but more diffusion of CO into the surrounding air masses is apparent
in the TOMCAT simulation. This agrees with the finding of (Rastigejev et al., 2010)
that a more complex plume boundary leads to its more rapid diffusive disintegration in10

Eulerian model simulations.
As on 10 July 2008 06:00 UTC the low-pressure system reaches Svalbard, it has

heavily deformed the pollution plume, leading to its disintegration into separated max-
ima (Fig. 4h). Interestingly, the core of the low-pressure system itself appears to remain
mostly free from mid-latitude pollution. As the plume is split into smaller segments, the15

stronger diffusion in the Eulerian simulation rapidly smoothes the horizontal TCO struc-
tures. Evidently, the width of the plume in relation to the grid resolution influences how
prone it is to numerical diffusion.

A vertical cross-section on 8 July 2008 12:00 UTC (Fig. 5) along 170◦ W/10◦ E as
indicated in Fig. 4e, f shows the progression of the polluted air mass towards the pole.20

The warm mid-latitude air masses have lifted the polar tropopause substantially. As
indicated by the white contours, the air mass is humid and mostly embedded in clouds.
At about 78◦ N the plume slides on top of the cold polar dome. Its lower boundary
reaches to 5–6 km near the North Pole. The CO mixing ratios in FLEXPART are in
general higher than in the TOMCAT simulation (Fig. 5a). This is particularly evident25

close to the mid-latitude source regions, which possibly points to differences in the
emissions. The diabatic transport processes that were involved in lifting this air mass
near the polar tropopause is investigated in detail in a study based on aircraft data from
the same campaign (Roiger et al., 2010).
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3.1.3 Advection across the pole

The direct advection of the pollution plumes across the North Pole allows us to investi-
gate effects of the numerical advection scheme on the plume structure. Figure 6 shows
a time sequence of the TCO field during 7 to 9 July 2008 as the pollution is crossing
the pole. All data are shown directly on the output grid for clarity. While the TOMCAT5

model has to deal with the convergence of the meridians towards higher latitudes, the
and a singularity at the pole, the Lagrangian FLEXPART model is per design not prone
to resolution issues, and in addition switches to a stereographic projection in the vicinity
of the pole. In the center row, the two large-scale transport models are compared to
a simulation of TCO from the limited-area CTM WRF-Chem, an Eulerian model run at10

higher grid resolution and on a rotated grid without singularity at the North Pole.
On 8 July 2008 00:00 UTC (Fig. 6a, d, g), a small plume is shed east of the main

plume that disperses quickly over the Russian Arctic. From the tropopause contour
there is no indication of a large-scale dynamic cause for this rapid spread. 12 h later,
in the TOMCAT simulation another partial plume is circumnavigating the pole on the15

eastern side, associated with enhanced diffusion. This feature is not visible in the
FLEXPART and WRF-Chem simulations (Fig. 6b, e, h). Apparently, the minor plume is
produced by the box grouping of the Prather et al. (1987) in TOMCAT described earlier
(Sect. 2.2). This results in a spreading of the tracer mass across a larger volume, and
reduced CO mixing ratios. As the plume progresses further on 9 July 2008 00:00 UTC20

(Fig. 6c, f, i), the plume shape has regained some of the structure present before cross-
ing the pole, effectively showing the result of the unpacking of second order moments
from the Prather scheme. Given the difficulties of simulating a finely structured plume
crossing the pole, and the relatively coarse grid resolution, the TOMCAT plume looks
remarkably similar to the FLEXPART and WRF-Chem simulation results.25

While the plume structure is represented well in the WRF-Chem simulation, TCO
values have 30–50% lower maxima compared to the two other models. This may
be due to the different anthropogenic emission inventories: while FLEXPART uses
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annual mean emissions, WRF-Chem uses the monthly RETRO emissions that have
a July minimum. The fire emission schemes may further contribute to the observed
differences. In order to keep focused on the main aspect of the paper, the comparison
of a Lagrangian and an Eulerian model simulation, the WRF-Chem simulation is not
compared further to the other model simulations.5

3.2 Comparison with satellite observations

The comparison between the two transport models FLEXPART and TOMCAT has
shown that the structures of the CO-rich air masses are overall similar in shape, in
particular for larger features. Smaller features and finer-scale structures however are
represented quite differently in their concentration gradients. Satellite remote-sensing10

data are employed now to compare both model simulations in terms of spatial structure
and magnitude of TCO to a reference data set.

Figure 7 shows daily composites of all daylight retrievals of the satellite observations
and the model fields sampled at the same space/time locations during 3–8 July 2008.
Due to the daily compositing, the structures in Fig. 7 do not find their direct correspon-15

dence in the time snapshots of TCO displayed in Figs. 2 and 4. The white area in
the IASI observations (Fig. 7, center column) are missing data due to impenetrable
cloud cover. Most thick clouds are in mid-latitudes and over forest fires as in Canada,
while the view into the Arctic atmosphere is mostly cloud-free. The low values over
Greenland in all panels are due to the reduced atmospheric column over orography,20

and difficulties to perform retrievals over ice-covered surfaces (Pommier et al., 2010).
Both models were weighted with a mean IASI averaging kernel (see Sect. 2).

On 3 July 2008 (Fig. 7a–c), both models and the satellite image show the first,
smaller plume between eastern Siberia and the North Pole as a hook-like structure.
The TCO maximum over south-eastern Siberia, over Scandinavia and south of Green-25

land are other areas with good model/satellite correspondence. Maximum values in
the IASI data are beyond the color scale (>1600 mg m−2). Visually, the IASI TCO ob-
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servations appear higher than both models. On average, the IASI TCO is typically
300–350 mg m−2 higher than FLEXPART TCO and 320–380 mg m−2 higher than TOM-
CAT TCO (note the different color scale in Fig. 7, middle column).

On 4 July 2008 (Fig. 7d–f), IASI shows the curled-up plume with two clear TCO max-
ima near the pole. While the Lagrangian FLEXPART model represents the structure5

of the maxima well, it is beyond the resolution of the Eulerian TOMCAT model to re-
alistically represent this break-up. This is more obvious one day later on 5 July 2008
(Fig. 7g–i), where IASI shows a narrow, elongated feature reaching from the pole to-
wards Scandinavia. The same feature is also present in the FLEXPART simulation.
The finding that such a narrow filament both in extension and location is very closely10

simulated by FLEXPART is an impressive demonstration of the capabilities of a La-
grangian model.

As the large pollution plume is advancing towards the pole on 6 and 7 July 2008
(Fig. 7j–l and m–o), both models agree well with the IASI observation. Initially, TOMCAT
has a tendency to advance the plume slightly too rapidly. Otherwise, the larger size15

of the polluted airmass leads to a smaller influence of numerical diffusion, and better
correspondence between models and satellite retrievals. The TCO maxima in the large
plume agree well between the models on 7 July 2008, also as it is reaching northern
Greenland on 8 July 2008 (Fig. 7p–r).

In general, it is remarkable how well the structure of the pollution plumes agree20

between the satellite observations and both model simulations. This underlines that
(i) the plumes simulated by the models have very similar correspondence in the real
world as seen by the IASI satellite, and (ii) the ECMWF analysis data that are used for
driving both model simulations are very reliable, even at high latitudes where weather
observations at the surface are generally sparse.25

The better agreement between the IASI observations and the FLEXPART simulation
in particular for fine-scale structures leads to the conclusion that the strong gradients
and narrow features predicted by the Lagrangian model (Sect. 3.1) are indeed a real
feature of atmospheric transport at these high latitudes. Not surprisingly, the Eulerian
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model has too much numerical diffusion at the grid-resolution applied here, which leads
to an unrealistic weakening of the TCO gradients.

As mentioned above, the TCO observations of IASI are higher than both model simu-
lations. Figures 8a,b show the probability density distributions of a correlation between
all IASI observations and the FLEXPART and TOMCAT model simulation, each trans-5

formed with a mean IASI AK. FLEXPART has an almost constant low bias compared
to the IASI observations, with the exception of values at ∼800 mg m−2 TCO, which
is the level of background concentrations. FLEXPART data below ∼650 mg m−2 TCO
are typically lower due to the underlying orography. The comparison between IASI
and the TOMCAT data (Fig. 8b) shows again a low bias, but somewhat stronger than10

for the FLEXPART model. The reason for the lower TCO values in TOMCAT com-
pared to Figs. 2,4 is that applying the IASI mean averaging kernel emphasizes the
upper-tropospheric part of the atmospheric column (Fig. 1b), where TOMCAT has the
strongest low bias (Fig. 1a). Additionally, there is a cloud of data points of IASI TCO
above 2000 mg m−2 that corresponds to data points of TOMCAT TCO of only about15

700 mg m−2. These data points are mostly located in the first, narrow CO plume that
is removed too quickly by numerical diffusion in the TOMCAT model. Further possible
causes of low biases of the model simulations are further investigated in Sect. 4.

In this context it is insightful to investigate how the actual model TCO values compare
with the simulated retrieval values. Figure 8c compares the TCO data points from the20

FLEXPART simulation without application of an AK vs. such weighted with the mean
IASI AK (Eq. 1). The simulated retrievals are higher than the model data without kernel
weighting. The overestimation increases linearly with increasing CO concentrations for
values larger than ∼800 mg m−2 TCO. The reason is probably that the prior is higher
in the lower troposphere than the mean of the observations (Fig. 1a). This kind of25

diagnostic could be useful to test the influence of an a priori that varies with latitude
and season on simulated retrievals. However, since the same a priori is applied to the
models and the satellite data, this does not explain the bias observed in Fig. 7.
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3.3 Comparison between models and CALIPSO data

The vertical distribution in the atmosphere is an important factor determining the life-
time and transport of CO released from forest fires. The vertical location of CO in the
model simulations is first determined by the emission schemes employed by the mod-
els. During atmospheric transport, lifting approximately along isentropes or fronts and5

mixing take place. While the horizontal structure of pollution plumes can be readily
measured from satellite platforms, it is considerably more challenging to validate the
vertical structure of the transport model simulations. Here we use the aerosol measure-
ments from the space-born lidar instrument CALIOP as a proxy for pollution transport
in the models. As we do not simulate aerosols in the TOMCAT model this comparison10

is carried out using the FLEPXART model only.
Out of 10 opportunities during the study period where aerosol was clearly detected

in the CALIPSO profiles two cases have been selected where aerosol was at high and
medium-low altitudes, respectively. A first case has been identified where aerosol is
visible in the highly lifted and filamented plume that is exiting the Arctic on 5 July 200815

07:09 UTC near 20◦ E/81◦ N (compare Fig. 2g, h). An area of enhanced backscatter
is visible at altitudes of 10–12 km in the section of the curtain contained by the red
markers (Fig. 9b). The much stronger signal further to the right indicates an ice cloud.

The discrimination between clouds and aerosols in CALIOP observations is per-
formed based on the differences in their optical and physical properties. It is based20

on an automated cloud and aerosol discrimination (CAD) algorithm (Liu et al., 2009).
The CAD algorithm is a multidimensional, at present latitude-independent, probability
density function (PDF) based approach (Liu et al., 2004). Attributes used are lidar
backscatter intensity, wavelength dependency, depolarization ratio, layer heights or an-
cillary parameters (e.g., temperature, pressure, location, season). The algorithm is25

most representative of the cloud and aerosol distributions at lower latitudes. Therefore,
some misclassifications of optically thin polar clouds (or edges of such clouds) can
occasionally occur.
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Low depolarization indicates spherical particles and a constant color ratio confirms
a uniform particle sizes is seen in the volume over the section of the curtain contained
by red markers (Fig. 9b). Nevertheless, this feature is classified as cloud, partly with
low or no confident, and as stratospheric feature, by the CALIPSO CAD (not shown).

The cross-section through the black carbon tracer field of the FLEXPART model5

(Fig. 9a) shows a maximum at the same altitude but slightly displaced horizontally. The
ECMWF tropopause (thick black contour) is somewhat elevated at this location, prob-
ably due to diabatic effects as indicated by the high relative humidity (blue contours).
Note that the BC tracer apparently has partly been lifted into the stratosphere. The
FLEXPART CO tracer shows that the aerosol in the tropopause region is a remainder of10

a deeper and more extensive pollution feature (Fig. 9c). Several subsequent CALIPSO
crossings at later times confirm the observation of this elevated aerosol plume (not
shown). The good co-location of these observations with the FLEXPART black carbon
tracer, strengthens the indication that the CALIOP feature is aerosol, wrongly classified
as cloud structure.15

A second case is a crossing of the CALIPSO satellite over a large active forest fire
in Siberia near 110◦ E, 60◦ N on 8 July 2008 19:22 UTC (Fig. 4e, f). The CALIPSO
curtain shows the aerosol load as high attenuated backscatter with a maximum at
∼3 km altitude, and extending to above 5 km in the vertical (Fig. 10b).

The mean profiles of depolarization and color ratio confirm the presence of aerosol20

more clearly than in the previous case. The CALIPSO vertical feature mask identifies
the region clearly as aerosol (not shown). In the FLEXPART BC tracer field, a strong
aerosol signal can be seen that corresponds well with the horizontal location of the
feature in the CALIPSO data. The feature however has a distinctively lower vertical
extent in the simulation (Fig. 10a, c). The maximum of the BC tracer is located near25

the surface instead of at higher altitudes, and the aerosol does not reach as high as
observed. This is probably due to the forest fire emission scheme in FLEXPART, which
places the smoke plume directly in the lowest model layer (0–150 m above ground)
and relies on turbulent transport and mixing processes to distribute the CO tracer in

26383

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/10/26361/2010/acpd-10-26361-2010-print.pdf
http://www.atmos-chem-phys-discuss.net/10/26361/2010/acpd-10-26361-2010-discussion.html
http://creativecommons.org/licenses/by/3.0/


ACPD
10, 26361–26410, 2010

Cross-polar pollution
transport

H. Sodemann et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

the vertical. This procedure likely concentrates the CO and aerosol near ground level.
In summary, the validation of the horizontal structure of the model simulations pro-

vides independent validation of the simulated forest fire plumes. While the vertical
altitude of one feature is well simulated, some deficiencies in the vertical distribution of
aerosol tracer near the emission source in FLEXPART are identified.5

3.4 Comparison between models and in situ aircraft data

In-situ CO observations of the NASA aircraft DC-8 during flight 22 on 9 July 2008
allow us to evaluate the validity of the model simulations against an independent data
set of in-situ observations. The flight data provides local information about the small-
scale structure of pollution plumes, the layering, and the strength of gradients. For10

the comparison, CO mixing ratios along the flight track have been extracted from the
FLEXPART and TOMCAT simulations.

The aircraft flew first over Greenland towards the south for an inter-comparison with
the DLR Falcon, then north up to 88◦ N, and back to Thule airport (Fig. 11a). Along
the way, the aircraft made several profiles to probe the vertical extent of pollution lay-15

ers (Fig. 11b). During the first leg of the flight, the aircraft encountered moderately
polluted layers of around 100–150 ppbv CO mostly at altitudes between 6000–8000 m
(Fig. 11c, red line). While both models follow the general trend of the aircraft data,
both underestimate the variability. A low bias is visible in the TOMCAT data, which ap-
pears consistent with the lower background concentrations already identified in Fig. 1a.20

FLEXPART’s tagged tracers indicate that the pollution enhancement at higher altitudes
originates from biomass burning, as can be seen from the offset of the solid black line
over the dashed black line.

As the aircraft is heading north at 15:00 UTC it enters stratospheric air with low
CO concentrations. At around 15:45 UTC it abruptly enters an airmass with signifi-25

cantly enhanced pollution levels, reaching up to 240 ppbv CO at around 8000 m altitude
(Fig. 11c). During this part of the flight, both models show very good agreement with
the flight data. Drops in pollution levels during downward and upward profiles in the
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observations and model data indicate that the vertical structure of the pollution is well
represented. Some of the CO enhancement observed by the aircraft originates from
biomass burning as identified by FLEXPART’s tagged tracers (gray area).

For further comparison, a backward analysis of the DC8 flight was performed using
FLEXPART. For the series of backward simulations along the flight track, the model5

is initialized in a very small volume around every flight position, whereas the forward
simulation output needs to be sampled along the flight track at the relatively coarse grid
resolution. Thus, a backward simulation takes full advantage of the Lagrangian nature
of the model and allows even finer-scale structures to be resolved than with the forward
simulation, as shown by Stohl et al. (2003). Air parcels were tracked backwards from10

locations along the flight track of the aircraft every few seconds, and emissions in the
surface layer integrated along the trajectories of the air parcel to construct estimates
of CO concentration. Figure 11d compares this backward product for biomass burning
emissions and combined anthropogenic and biomass burning emissions to the DC8
CO measurements. It can be seen that a number of the peaks in the observational time15

series are better matched in the backward product (e.g. near 16:20 UTC or 17:40 UTC)
which are due to forest fires. Also, more fine-scale structure is present in the model
time series. In a few cases, the backward product is worse than the forward product
(e.g. near 14:50 UTC).

The vertical structure of the pollution is further investigated by a comparison between20

the vertical CO curtains from both models along the flight track, and the DIAL aerosol
lidar onboard the NASA DC-8 (Fig. 12a). While the aerosol backscatter lidar signal is
not directly comparable to the CO field in the model simulations, it gives some indication
of vertical and horizontal positioning of pollution plumes, and the location of maxima.
As can be seen most clearly in the TOMCAT and FLEXPART CO mixing ratio curtains25

(Fig. 12c, e), the aircraft probed two major pollution areas, a first one that is of smaller
scale and at altitudes between 6000–10 000 m, located south of Greenland (Fig. 11a).
Later on a second, broader plume of higher CO concentrations was reached that also
extends over a larger range of altitudes (4500–11 000 m), and was located over the
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Canadian Arctic (Fig. 11a).
While the location of the maximum of the first feature in terms of altitude and extent

agrees well between FLEXPART and the DC-8 lidar data, the maximum is more diffuse
and has a larger horizontal extent in the TOMCAT simulation. As indicated by the
relative humidity data from ECMWF (Fig. 12b, blue contours) at least some of the5

backscatter in the aerosol plot likely originates from clouds. The dynamical tropopause
from the ECMWF analysis (thick red line) confirms that the aircraft sampled in the
stratosphere at around 15:30 UTC.

The second feature, which is delimited towards the south by ice clouds (dark red
area in Fig. 12a) is simulated quite differently in terms of CO structure by the two mod-10

els. While FLEXPART distributes the CO pollution roughly co-located with the clouds
and down to altitudes of 3000 m (Fig. 12c), in TOMCAT the pollution plume has a
core of high values at about 7000 m altitude. As Fig. 11c demonstrates, both shapes
of the plume provide a more or less realistic simulated CO measurement along the
DC-8 flight, even though TOMCAT has a low bias at around 17:00 UTC. The two mod-15

els appear to have ejected the biomass burning emissions into different atmospheric
layers, and thus the core of the polluted air reaches further down in the FLEXPART
simulation (Fig. 12c). Unfortunately this region was not directly probed by the air-
craft. However, the DIAL data and FLEXPART aerosol tracer show a similar upper
boundary at ∼17:00 UTC (Fig. 12a, b). Most likely the difference is related to the20

fact that FLEXPART initiates wildfires in the model at the time of appearance of a
MODIS hotspot, while in TOMCAT the emissions are distributed over a day starting at
00:00 UTC (Monks et al., 2010).

The black carbon tracer from FLEXPART indicates the presence of some aerosol
in both major plumes (Fig. 12b). While in the first plume the aerosol is near the25

tropopause, the second plume has a simulated aerosol maximum at lower levels. The
cloudiness of the scene makes a comparison to the DIAL data difficult. Some of the
finer aerosol layers at intermediate levels 6000–8000 m that are apparent in the DIAL
data between 12:00–16:00 UTC are not simulated by FLEXPART. A separation of the
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CO enhancement in FLEXPART due to forest fires (Fig. 12d) and Asian anthropogenic
emissions (Fig. 12f) highlights that the pollution is vertically stacked, similar to the
aerosol mixing ratios: the first plume contains mostly forest fire emissions, while the
second plume is of Asian fossil fuel combustion origin above about 6–7 km altitude
and of mixed Asia forest fire and Asian fossil fuel combustion origin below. Thus, dur-5

ing advection the airmass had incorporated other polluted air masses of East Asian
(Chinese) origin (not shown).

4 Discussion

4.1 Transport with Arctic low-pressure systems

It may appear rare to observe two low-pressure systems in the proximity of the North10

Pole within such a short period. However it is well established that the mean SLP
field during Northern Hemisphere (NH) summer (JJA) has a SLP minimum near 85◦ N,
180◦ E (Reed and Kunkel, 1960; Serreze and Barrett, 2008). Tracking cyclones in the
NCEP (National Center for Environmental Prediction) reanalysis data for the period
1971–2000, Orsolini and Sorteberg (2009) found that the Arctic SLP minimum is es-15

tablished by about 20 cyclonic systems each season that slow down and finally decay
near the central Arctic ocean. Most of these systems originate in a baroclinic zone
located along the Eurasian coast that presumably is created by the land/ocean tem-
perature contrast in that region during summer (Serreze and Barrett, 2008). In this
context, it appears not unusual that two such events occurred during the two-week pe-20

riod of the POLARCAT summer campaign (1–15 July 2008). Only the second cyclone
was unusually strong which allowed it to cross the north pole and to be still visible
as a SLP minimum when being incorporated in the mean westerly flow over Scandi-
navia. The regularity of such cyclone events (Orsolini and Sorteberg, 2009) suggests
that the transport events studied here may be a common pathway for the transport of25

Asian forest fire and fossil-fuel burning emissions into the Arctic atmosphere during NH
summer.
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4.2 Model TCO low biases

The two transport models clearly have lower TCO values than the IASI satellite re-
trievals. It is equally possible that the models are biased low as that the satellite re-
trievals are biased high. One possibility for a model low bias in case of the FLEXPART
model is that the background CO profile that was added to the FLEXPART data was5

too low. However, increasing the background CO uniformly would also increase the
number of data points that have lower values in the IASI data than in the FLEXPART
simulation. A further possibility is that the models transport most of the CO at altitudes
where IASI is less sensitive. As can be seen in Fig. 1b, IASI is most sensitive to the
CO concentration at 200–400 hPa, while surface data are mostly determined by the10

a priori. Another possible cause for an offset is the prior that was used for the IASI
retrievals (Fig. 1a). For a fair comparison with the satellite data, the model data had to
be blended with the kernel and the prior according to Eq. 1. At vertical altitudes above
300 hPa the discrepancy between the IASI a priori and the model background reaches
its maximum (Fig. 1a). Possibly, the choice of a globally applicable a priori profile that15

does not take into account the low tropopause height in polar regions causes a high
bias for high latitude retrievals. Note also that due to this weighting model differences
at lower levels are obscured in a TCO comparison.

Due to the economic development in East Asia in recent years, emissions from fossil-
fuel burning have increased tremendously, maybe even doubled, since the year 200020

(the current updating status of the EDGAR emissions inventory). The DC8 was sam-
pling North American air for the first half of its flight on 9 July 2008. After 16:00 UTC, it
sampled air masses with Asian origin (Fig. 12f). The low bias for TOMCAT is stronger
in the North American air for TOMCAT, but not for FLEXPART (Fig. 11b). In the Asian
air, the peaks are underestimated. This could be an indication that Asian emissions are25

indeed underestimated. For FLEXPART it is less of a problem to match the baseline
since this is at least partly incorporated in the background profile. As Shindell et al.
(2008) concluded, in fact most current CTMs have a CO low bias in the Arctic.
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Further validation studies of the IASI data using in situ aircraft profile data under-
neath the satellite are currently ongoing (Pommier et al., 2010). They show that below
8 km, retrieved IASI profiles are biased high compared to smoothed profiles from in situ
measurements for polluted cases during the summer of 2008. Comparing CO in the
GEOS-Chem CTM and the AIRS satellite Fisher et al. (2010) also noted a consistent5

high bias of the satellite data. In that case however, the high bias of the AIRS data is
probably induced by the operational retrieval method (Warner et al., 2010).

One possibility for a high bias of the IASI retrievals could be that in general the at-
mospheric CO enhancements are located at fairly high altitudes, where IASI has good
sensitivity. The retrieval algorithm accordingly tries to capture the enhancement by de-10

parting from the prior. It probably does well in the free troposphere, but because the
sensitivity in the lowest layers is close to zero, this also translates to higher concen-
trations near the surface. In other words the entire profile is scaled to catch the free
tropospheric enhancements, and then the resulting total CO column is too high.

4.3 Model-data comparison15

The present flight data does not allow for a final evaluation of which model is more re-
alistic. However, taking into account the overall information gained from the multi-data
comparison of both model simulations allows a better or more informed understanding
of along-flight CO data extracted from a Lagrangian or an Eulerian model. The prime
difference between the two kinds of models is the impact of numerical diffusion and the20

preservation of gradients. As convincingly demonstrated by the IASI satellite obser-
vations, fine filaments are created from larger plumes over the course of several days
with high gradients that can not be simulated by coarse resolution models. Lagrangian
models do retain these gradients. This is particularly relevant in the polar atmosphere,
where due to the strong atmospheric stability stirring generally is more important than25

mixing. Nevertheless, it should be emphasised that the advection of a fine-scale struc-
ture directly across the pole can be seen as the most difficult test case for a Eulerian
model, and in this context the results from the TOMCAT model can be considered as
encouraging.
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A drawback in Lagrangian models without full chemistry is that they need a back-
ground value for atmospheric constituents beyond the transport time scale, which is
a non-trivial choice, and could introduce a bias. Further aspects that are relevant are
the vertical structure of plumes as they are emitted, and the kind of data that is out-
put. An aircraft may observe much smaller filaments than simulated by any model.5

The variability seen in an aircraft measurement is difficult to reproduce in any model
without the inclusion of further subgrid-scale processes that would take into account
non-homogeneous tracer distribution.

Most CTMs point to Asia as the largest pollution source at higher altitudes (500–
250 hPa) in the Arctic (Shindell et al., 2008; Koch and Hansen, 2005). But even in10

the lower troposphere of the Arctic CTMs have a higher Asian contribution to the over-
all pollution (e.g. Koch and Hansen, 2005; Fisher et al., 2010) than indicated by La-
grangian model (Stohl, 2006). Given the findings from the present study, it is likely
that numerical effects, such as the larger horizontal and in particular vertical resolution
in Eulerian CTMs compared to the (maybe overly) sharp concentration gradients in a15

Lagrangian model contribute to the difference of simulation results from both model
types.

5 Conclusions

The main conclusions from comparing the two conceptually very different atmospheric
transport model simulations with observational data are that (i) in general, both model20

simulations driven by the same meteorological fields (even though at different resolu-
tions) agree remarkably well for features of sufficient size. (ii) Pollution features that
cannot be sufficiently resolved on the grid of an Eulerian model disperse too quickly,
whereas gradients are well preserved by the Lagrangian model. (iii) Numerical issues
arising from the singularity at the pole could be relevant for overly strong diffusion and25

other artifacts.
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Retrieved values of TCO from the IASI satellite allow us to validate the spatial extent
and structure of pollution plumes as simulated by the models. Comparison with aircraft
in situ data shows that the vertical structure of for example aerosol load may depend on
the parameterisation scheme of forest fire emissions in FLEXPART either with respect
to height or magnitude or both.5

It is non-trivial to find a reference observation against which the model results can
be compared. Satellite observations provide good spatial coverage, but are limited in
vertical resolution, in particular in the Arctic region due to the low temperatures prevail-
ing. In addition, satellite retrievals are only sensitive within certain atmospheric layers
as reflected by the averaging kernel. The choice of the a priori may hence have a large10

influence on all retrievals. Nonetheless it is crucial when comparing model simulations
to satellite data to apply the prior to the models as well. Specifically adapted a priori
profiles, e.g. dependent on latitude and season, may help to reduce the likelihood of
potential biases in the satellite data.

While numerical issues are important, and may need further attention or should at15

least be kept in mind when comparing models to observations, the general level of
agreement between the model simulations and observations is quite impressive and
strengthens the basis for using such model data in large-scale observation campaigns.
When integrating over longer time scales, however, even small numerical inaccuracies
due to overly strong diffusion could influence large-scale concentration gradients to a20

noticeable degree.
It is therefore beneficial to compare Lagrangian and Eulerian model results while

knowing about the specific numerical effects of a coarse-grid model. Until a Lagrangian
CTM is available that is able to reliable simulate mixing and chemical processes, a com-
bination of the information from both kinds of models appears most useful in analysing25

in situ and remote sensing observational data.
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Fig. 1. (a) Background CO profiles from the FALCON GRACE campaign data (blue line), back-
ground profile added to the FLEXPART data (red), background CO of the TOMCAT simulations
(black), and the a priori for IASI CO retrievals (green). See text for details. (b) Individual aver-
aging kernels (gray) and mean (red) for IASI total column CO retrievals north of 60◦ N (black).
FLEXPART and TOMCAT data were weighted with the mean kernel interpolated to the FLEX-
PART altitude points (red circles).

26399

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/10/26361/2010/acpd-10-26361-2010-print.pdf
http://www.atmos-chem-phys-discuss.net/10/26361/2010/acpd-10-26361-2010-discussion.html
http://creativecommons.org/licenses/by/3.0/


ACPD
10, 26361–26410, 2010

Cross-polar pollution
transport

H. Sodemann et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

600

700

800

900

1000

1100

1200

1300

1400

1500

1600

mg m
-2

40°E

70°N

80°N

40°W

140°E140°W

a) b)

2
 J

u
ly

 2
0
0

8
 0

6
 U

T
C

3
 J

u
ly

 2
0
0

8
 0

0
 U

T
C

4
 J

u
ly

 2
0
0
8
 0

0
 U

T
C

5
 J

u
ly

 2
0
0
8
 1

2
 U

T
C

c) d)

e) f)

g) h)

FLEXPART TOMCAT

Fig. 2. Total column CO (shading, mg m−2) during the period 2 July 2008 06:00 UTC to 5 July 2008 12:00 UTC in

the FLEXPART model simulation (left column) and the TOMCAT model simulation (right column). The meteorological

situation is denoted by the dynamic tropopause in the left column (2 pvu isoline at the 315 K isentrope, blue line) and

sea-level pressure in the right column (white contours, 1010 to 970 hPa at 3 hPa interval) using ECMWF analysis data.

Thick white line denotes the transect shown in Fig. 3. Note that the color scale for the two models differs to most

effectively show the structure in both simulations.
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Fig. 3. Vertical cross-sections of CO concentrations in ppbv through the Arctic atmosphere
on 4 July 2008 00:00 UTC from 60◦ N to 40◦ N along 160◦ E/20◦ W through (a) the FLEXPART
simulation and (b) the TOMCAT simulation. Meteorological conditions are shown by contours
of potential temperature (thin black lines), relative humidity (80 and 90 percent, white dashed
and solid lines), and the dynamical tropopause (2 pvu, thick black line) from ECMWF analysis
data.
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Fig. 4. As Fig. 2, but for the period 6 July 2008 06:00 UTC to 10 July 2008 06:00 UTC. Thick
white line denotes the transect shown in Fig. 5.
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Fig. 5. As Fig. 3, but for a vertical cross-sections through the Arctic atmosphere on 8 July 2008
12:00 UTC from 60◦ N to 40◦ N along 170◦ W/10◦ E.
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Fig. 6. Zoomed view of total column CO (shading, mg m−2). (a–c) Total column CO from the
FLEXPART simulation on 7 July 2008 12:00 UTC, 8 July 2008 00:00 UTC and 9 July 2008
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Fig. 7. Comparison of total column CO from FLEXPART (left column), IASI (center column)
and TOMCAT (right column) in mg m−2 during 3 to 8 July 2008. Displayed are IASI daylight
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Fig. 9. Comparison of simulation data with the space-borne CALIPSO lidar for an aerosol
feature observed on 5 July 2008 07:00 UTC near Greenland (see Fig. 2d). (a) FLEXPART
black carbon tracer concentration (ppt), (b) aerosol backscatter and depolarization from the
CALIPSO satellite and vertical mean for the feature delineated by red vertical lines. (c) CO
concentration (ppbv) from FLEXPART. Meteorological conditions are indicated by the dynamical
tropopause (2 pvu, thick black and white contour), potential temperature (thin black contours),
and relative humidity (80% and 90%, dotted and solid blue and white contours) from ECMWF
analyses.
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Fig. 10. As Fig. 9, but for an aerosol feature observed on 8 July 2008 19:00 UTC (see Fig. 4c).
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with background CO concentrations to make the plume uniformly visible. (b) Flight altitude from
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Fig. 12. (a) Aerosol scattering ratio (1064 nm) during DC-8 Flight 22 on 9 July 2008. (b) black
carbon curtain (pptv) and (c) total CO curtain (ppbv) from FLEXPART. (d) biomass burning CO
tracer (ppbv) from FLEXPART, (e) TOMCAT total CO (ppbv) and (f) Asian CO tracer (ppbv)
from FLEXPART. Flight track is shown as thick black line in all panels. Meteorological condi-
tions are indicated by the dynamical tropopause (2 pvu, thick red contour, panel b–f), potential
temperature (black contours, panel b–f), and relative humidity (80% and 90%, dotted and solid
blue contours, panel b) from ECMWF analyses. Orography in each panel is shown according
to the respective model’s resolution.
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